Glucose-lowering effect of DLBS3233 is mediated through phosphorylation of tyrosine and upregulation of PPARγ and GLUT4 expression

نویسندگان

  • Olivia Mayasari Tandrasasmita
  • Deasy Diah Wulan
  • Florensia Nailufar
  • James Sinambela
  • Raymond Rubianto Tjandrawinata
چکیده

BACKGROUND DLBS3233 is a standardized extract combination containing Lagerstroemia speciosa and Cinnamomum burmannii. The effect of DLBS3233 on glucose uptake, adiponectin secretion, and insulin signaling was examined in this study. METHODS 3T3 Swiss albino preadipocytes and adipocytes were used to investigate gene expression detected using the reverse transcription polymerase chain reaction method. Immunoblotting assay and in vitro glucose uptake assay were also carried out in the experiment. RESULTS DLBS3233 was seen to increase phosphorylation at the tyrosine residue of the insulin receptor substrate. DLBS3233 was also found to enhance the expression of genes associated with increased insulin signaling and sensitivity, such as peroxisome proliferator-activated receptor gamma, phosphatidylinositol-3 kinase, Akt, and glucose transporter 4. In addition, glucose transporter 4 protein levels were seen to increase as a result of DLBS3233 administration. The combination of extracts also increased glucose uptake and adiponectin secretion, and decreased resistin secretion significantly relative to control cells. Moreover, DLBS3233 administered to insulin-resistant Wistar rats showed an ability to control blood sugar, insulin levels, and other lipoproteins, including high-density lipoprotein, low-density lipoprotein, triglycerides, and total cholesterol. CONCLUSION DLBS3233, as a combination of herbal extracts, holds promise in the treatment of type 2 diabetes, and possibly also in prevention of the disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antihyperglycemic effect of Rosa damascena is mediated by PPAR.γ gene expression in animal model of insulin resistance

Insulin resistance is a condition in which insulin signaling and action are impaired in insulin sensitive tissues and results in hyperglycemia, hyperlipidemia and type 2 diabetes mellitus. Our previous studies have shown that rosa damascena has antihyperglycemic effects on diabetic and normal rats. Therefore, we conducted a study to evaluate the effect of this medicinal plant on insulin sensiti...

متن کامل

Antihyperglycemic effect of Rosa damascena is mediated by PPAR.γ gene expression in animal model of insulin resistance

Insulin resistance is a condition in which insulin signaling and action are impaired in insulin sensitive tissues and results in hyperglycemia, hyperlipidemia and type 2 diabetes mellitus. Our previous studies have shown that rosa damascena has antihyperglycemic effects on diabetic and normal rats. Therefore, we conducted a study to evaluate the effect of this medicinal plant on insulin sensiti...

متن کامل

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation

Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kina...

متن کامل

The Effect of Curcumin on GLUT4 Gene Expression as a Diabetic Resistance Marker in C2C12 Myoblast Cells

Objective: Adipocyte and skeletal muscle are important tissues which contribute the development and progression of metabolic disorder. Insulin has a major regulatory function on glucose metabolism in these tissues by redistributing glucose transporter (GLUT4) from intracellular vesicles to the cell surface. Today, due to the side effects of chemical medications attendance to herbal medicines is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011